卫星元数据
卫星元数据对于精确建模GNSS数据至关重要。这些包括唯一标识符,如SVN,COSPAR ID,卫星目录号(NORAD ID); PRN / SVN映射;用于GLONASS的SVN /频道映射;卫星质量;质量中心;发射天线和激光后向反射器阵列偏心率;并传输功率。关于这个主题的更多细节在IGS关于卫星和操作信息的白皮书中给出(https://kb.igs.org/hc/article_attachments/115003023391/Whitepaper_SatelliteMetaData_IGS_171021.pdf),用于生成精确的GNSS轨道和时钟产品。
伽利略(https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata)和QZSS(http://qzss.go.jp/en/technical/qzssinfo/index.html)的元数据已经由欧洲GNSS服务中心和日本政府内阁办公室(CAO)发布。 CAO还提供操作历史信息,包括轨道维护操纵和姿态开关。
为了能够以标准格式存储和交换GNSS卫星元数据,解决方案无关交换(SINEX,https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Documents/ac/sinex/sinex_v202_pdf)格式的扩展。
IGS卫星元数据文件草稿(2018年3月29日)(http://mgex.igs.org/igs_metadata_1994.snx)
卫星元数据格式描述(http://mgex.igs.org/IGS_MGEX_Metadata_Format.php)
Cabinet Office (2017a) The history information of QZS-1 operation. Tech. Rep. OHI-QZS1, Government of Japan, National Space Policy Secretariat, URL
Cabinet Office (2017b) QZS-1 satellite information. Tech. Rep. SPI_QZS1, Government of Japan, National Space Policy Secretariat, URL http://qzss.go.jp/en/technical/qzssinfo/khp0mf0000000wuf-att/spi_qzs1.pdf
Cabinet Office (2017c) QZS-2 satellite information. Tech. Rep. SPI-QZS2_A, Government of Japan, National Space Policy Secretariat, URL http://qzss.go.jp/en/technical/qzssinfo/khp0mf0000000wuf-att/spi-qzs2_a.pdf
Cabinet Office (2017d) QZS-3 satellite information. Tech. Rep. SPI-QZS3, Government of Japan, National Space Policy Secretariat, URL http://qzss.go.jp/en/technical/qzssinfo/khp0mf0000000wuf-att/spi-qzs3.pdf
Cabinet Office (2017e) QZS-4 satellite information. Tech. Rep. SPI-QZS4, Government of Japan, National Space Policy Secretariat, URL http://qzss.go.jp/en/technical/qzssinfo/khp0mf0000000wuf-att/spi-qzs4.pdf
Czopek F, Shollenberger S (1993) Decodeion and performance of the GPS Block I and II L-band antenna and link budget. In: Proceedings of ION GPS 1993, Salt Lake City, UT, pp 37-43
Fatkulin R, Kossenko V, Storozhev S, Zvonar V, Chebotarev V (2012) Glonass space segment: satellite constellation, Glonass-M and Glonass-K spacecraft main features. In: ION GNSS 2012, Nashville, TN, pp 3912-3930
Hegarty C (2017) The Global Positioning System (GPS). In: Teunissen P, Montenbruck O (eds) Springer Handbook of Global Navigation Satellite Systems, Springer, chap 7, pp 197-218, DOI 10.1007/978-3-319-42928-1_7
Kramer HJ (2002) Observation of the Earth and Its Environment: Survey of Missions and Sensors, 4th edn. Springer, DOI 10.1007/978-3-642-56294-5
Montenbruck O, Schmid R, Mercier F, Steigenberger P, Noll C, Fatkulin R, Kogure S, Ganeshan A (2015) GNSS satellite geometry and attitude models. Advances in Space Research 56(6):1015-1029, DOI 10.1016/j.asr.2015.06.019
Revnivykh S, Bolkunov A, Serdyukov A, Montenbruck O (2017) GLONASS. In: Teunissen P, Montenbruck O (eds) Springer Handbook of Global Navigation Satellite Systems, Springer, chap 8, pp 219-245, DOI 10.1007/978-3-319-42928-1_8
Sosnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. Journal of Geodesy 89(7):725-743, DOI 10.1007/s00190-015-0810-8
Steigenberger P, Thoelert S, Montenbruck O (2017) GNSS satellite transmit power and its impact on orbit determination. Journal of Geodesy DOI 10.1007/s00190-017-1082-2
Xu X, Li M, Li W, Liu J (2018) Performance analysis of BeiDou-2/BeiDou-3e combined solution with emphasis on precise orbit determination and precise point positioning. Sensors 18(1):135, DOI 10.3390/s18010135
Zandbergen R, Navarro D (2008) Specification of Galileo and GIOVE space segment properties relevant for satellite laser ranging. Tech. Rep. ESA-EUING-TN/10206, iss. 3.2, 08/05/2008, ESA/ESOC, Darmstadt
Zhao Q, Wang C, Guo J, Wang B, Liu J (2018) Precise orbit and clock determination for BeiDou-3 experimental satellites with yaw attitude analysis. GPS Solutions DOI 10.1007/s10291-017-0673-y
原文链接:
http://mgex.igs.org/IGS_MGEX_Metadata.php
尚无评论!